

Cycloadditions

DOI: 10.1002/ange.200600961

Thermally Induced and Silver-Salt-Catalyzed [2+2] Cycloadditions of Imines to (Alkoxymethylene)cyclopropanes**

Itaru Nakamura,* Tetsuya Nemoto, Yoshinori Yamamoto, and Armin de Meijere

[2+2] Cycloadditions of imines to carbon-carbon multiple bonds have been widely applied in organic synthesis, as they produce highly useful azetidine derivatives in a single step.^[1] [2+2] Cycloadditions of imines to ketenes, originally discovered by Staudinger, [2] provide azetidin-2-ones (β-lactams) (Scheme 1, type a). Recently, allenes^[3] and enones^[4] were

a)
$$R^1$$
 $= 0$
 $= N$
 $=$

b)
$$\longrightarrow$$
 OR^1 \longrightarrow 12 kbar \longrightarrow N R^2

Scheme 1. [2+2] Cycloadditions of imines to a) ketenes^[2] and b) enol ethers.[5]

utilized as substrates for [2+2] cycloadditions with imines. However, cycloadditions of imines to enol ethers (Scheme 1, type b) have rarely been employed; Scheeren and co-workers reported that [2+2] cycloadditions of imines to enol ethers require high pressure (12 kbar).^[5] Owing to their ring strain, (alkoxymethylene)cyclopropanes, which are easily accessible and stable at room temperature, ought to be particularly favorable substrates for various cycloadditions; [6] de Meijere et al. reported high-pressure-promoted [4+2] cycloadditions of (alkoxymethylene)cyclopropanes to β,γ -unsaturated α -

[*] Dr. I. Nakamura, T. Nemoto, Prof. Dr. Y. Yamamoto Department of Chemistry

Graduate School of Science, Tohoku University

Sendai 980-8578 (Japan) Fax: (+81) 22-795-6784

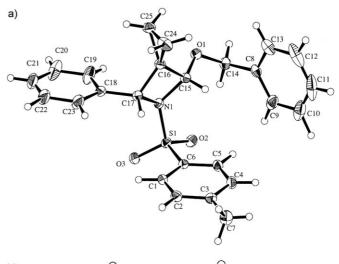
E-mail: itaru-n@mail.tains.tohoku.ac.jp

Prof. Dr. A. de Meijere Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2, 37077 Göttingen (Germany)

- [**] For one of us (A.d.M.) this is to be counted as Part 129 in the series "Cyclopropyl Building Blocks for Organic Synthesis". Part 128: V. S. Korotkov, O. V. Larionov, A. de Meijere, Synthesis 2006, in press. Part 127: C. Tanguy, A. de Meijere, P. Bertus, J. Szymoniak, O. V. Larionov, A. de Meijere, Synlett 2006, in press.
- Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

ketoesters.^[7] Herein we report our first results concerning [2+2] cycloadditions of imines to (alkoxymethylene)cyclopropanes **1** at ambient pressure.

When (benzyloxymethylene)cyclopropane (**1a**; 1.5 equiv) was heated with *N*-tosylbenzaldimine (**2c**; 1.0 equiv) in acetonitrile at 80 °C for 40 h, the [2+2] cycloadduct 4-benzyloxy-6-phenyl-5-tosyl-5-azaspiro[2.3]hexane (**3ac**) was isolated in 97 % yield, predominantly as the *cis* diastereomer (51:1) (Table 1). The same reaction, but with 1 equivalent of


Table 1: Thermal [2+2] cycloadditions of **2** to (alkoxymethylene)cyclopropanes **1**.

1 ^[a]	R ¹	2	R ²	R^3	t [h]	3	Yield [%] ^[b]	cis/trans ^[c]
1 a	Bn	2 c	Ph	Ts	40	3 ac	97 ^[d]	51:1
1 a	Bn	2d	p -MeOC $_6$ H $_4$	Ts	46	3 ad	82	24:1
1 a	Bn	2 e	p - $CF_3C_6H_4$	Ts	6	3 ae	91	18:1
1 a	Bn	2 f	<i>t</i> Bu	Ts	61	3 af	80	29:1
1 a	Bn	2g	Ph	Ns	4	3 ag	92	28:1
1 a	Bn	2 h	Ph	SO_2Ph	32	3 ah	71	28:1
1 b	nВu	2 c	Ph	Ts	24	3 bc	80	8:1

[a] In general, 1 (0.3 mmol) was treated with 2 (0.2 mmol). [b] Yields of isolated products. [c] The diastereomeric ratio was determined by 1 H NMR spectroscopy. [d] Scale: 1a (3.0 mmol), 2c (2.0 mmol); product 3 ac obtained in 68% yield. Ns = nosyl = p-nitrobenzenesulfonyl; Ts = p-toluenesulfonic acid.

1a, gave 3ac in 65% yield along with recovered 2c (14%). The reaction of 1a with other N-tosylarylaldimines 2d and 2e produced 3ad and 3ae in 82 and 91% yield, respectively. The N-tosylimine of pivaldehyde 2f also reacted with 1a to give the corresponding [2+2] cycloadduct 3af in 80% yield. With N-nosylbenzaldimine (2g) and N-benzenesulfonylbenzaldimine (2h), the corresponding N-nosylazetidine 3ag and N-benzenesulfonylazetidine 3ah were obtained in 92 and 71% yield, respectively. (n-Butoxymethylene)cyclopropane (1b) reacted with 2c smoothly to give 3bc. The constitutions of the spirocyclopropanated azetidines 3 were confirmed by spectroscopic methods. Furthermore, the structures of both the cis and the trans isomers of 3ac were established unambiguously by X-ray crystallographic analyses (Figure 1). [8]

To test the possibility of performing this cycloaddition more efficiently and at lower temperature, several Lewis acidic transition-metal compounds were screened. Among the Lewis acids tested (AuBr₃, [Cu(acac)], Pd(OAc)₂, Zn(OTf)₂, Sc(OTf)₃, Yb(OTf)₃, AgOTf, [Ag(acac)]), only [Ag(fod)] (fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato) exhibited the desired catalytic activity. Thus, the reaction of **1a** (1 equiv) with **2c** (1 equiv) in the presence of [Ag(fod)] (10 mol%) in ethyl acetate at 30 °C proceeded smoothly to give **3ac** in 94% yield (Table 2, entry 1). At 30 °C in the absence of the silver catalyst, no reaction was observed, and only the starting materials were recovered quantitatively. The choice of solvent turned out to be very important; the reaction proceeded almost equally well in acetone, THF, and CH₂Cl₂, but sluggishly in acetonitrile, toluene, and hexane.

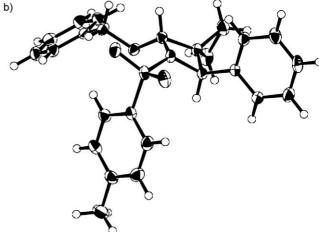


Figure 1. Crystal structures of a) cis-3 ac and b) trans-3 ac. ORTEP representations with thermal ellipsoids set at 50% probability. [8]

Table 2: Catalyzed versus thermally induced [2+2] cycloadditions of **2** to

			ı a.												
2	R ²	R^3	3	Catalytic ^[a]		Thermal ^[b]									
				Yield	cis/	Yield	cis/								
				[%] ^[c]	trans ^[d]	[%] ^[c]	trans ^{[d}								
2 c	Ph	Ts	3 ac	94	135:1	97	51:1								
2i	CO ₂ Et	Ts	3 ai	45	35:1	57 ^[e]	1.2:1								
2j	Ph	Ms	3 aj	77	46:1	93	5:1								
2 k	$4-CF_3C_6H_4$	Ms	3 ak	76	48:1	84	4:1								
	2c 2i 2j	2c Ph 2i CO ₂ Et 2j Ph	2c Ph Ts 2i CO2Et Ts 2j Ph Ms	2c Ph Ts 3 ac 2i CO2Et Ts 3 ai 2j Ph Ms 3 aj	$\begin{tabular}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								

[a] The reaction of 1 (0.3 mmol) and 2 (0.3 mmol) was carried out in the presence of [Ag(fod)] (10 mol%) in ethyl acetate (0.3 mL) at 30 °C. [b] The reaction of 1 (0.3 mmol) and 2 (0.2 mmol) was carried out in acetonitrile (0.1 mL) at 80 °C. [c] Yields of isolated products. [d] The diastereomeric ratio was determined by ¹H NMR spectroscopy. [e] The reaction was carried out at 30 °C. Ms = methanesulfonyl.

The catalyzed reaction of the *N*-tosylimine **2i** derived from ethyl glyoxylate produced **3ai** with higher *cis* selectivity than that of the thermal reaction (Table 2, entry 2). The reaction of *N*-mesylbenzaldimines **2j** and **2k** also proceeded with higher *cis* selectivity under the catalytic conditions (Table 2, entries 3 and 4).^[9]

Zuschriften

This [2+2] cycloaddition is proposed to proceed in two steps via the well-stabilized 1,4-zwitterion 4. Initially, nucle-ophilic attack of the carbon–carbon double bond in 1 on the electrophilic center in the imine 2 would most probably lead to the *anti*-oriented zwitterion *anti*-4, which after internal rotation cyclizes to the azetidine *cis*-3 or *trans*-3 (Scheme 2).

EWG,
$$N = \mathbb{R}^2$$
 \mathbb{R}^2
 $\mathbb{R}^$

Scheme 2. Mechanism of the thermally induced [2+2] cycloaddition of 1+2. EWG = electron-withdrawing group.

2c

Apparently, this ring closure is reversible, and *cis-3* is the thermodynamically more stable isomer, as isolated *trans-3ac*, when heated in acetonitrile at 80 °C for 16 h, isomerized virtually completely to *cis-3ac*. Under the same conditions, *cis-3ac* remained unchanged. The greater stability of *cis-3ac* most likely stems from a smaller repulsion between the toluenesulfonyl and the benzyloxy group in the *cis* isomer (see Figure 1). According to DFT calculations at the B3LYP/6-311G level of theory, *cis-3ac* is 2.1 kcal mol⁻¹ more stable than *trans-3ac*. The stabilization of the zwitterionic intermediate 4 by the cyclopropyl group adjacent to the cationic center is essential, as the enol ether 5, which does not contain a cyclopropane ring, did not react with the *N*-tosylimine 2c, neither under purely thermal nor under catalytic conditions.^[10]

The silver complex certainly acts as a Lewis acid and enhances the electrophilicity of the imine as in 6 (Scheme 3), and C-N bond formation would occur through the silver amide intermediate *syn-7*, leading predominantly to the *cis-3* isomer.

One of the potential applications of these newly accessible spirocyclopropanated azetidines was demonstrated by the facile three-step conversion of the [2+2] cycloadduct cis-3 ag into the β -phenylalanine analogue 10. Hydrolysis of cis-3 ag afforded the aldehyde 8 in 90% yield. Jones oxidation of 8

$$\begin{array}{c} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$

Scheme 3. Mechanism of the silver-catalyzed [2+2] cycloaddition of 1+2.

and subsequent removal of the nosyl group of 9 gave 10 (Scheme 4).

Scheme 4. Synthesis of α -cyclopropane-modified β -phenylalanine **9**.

Several catalyzed cycloadditions of methylenecyclopropanes to imines have been reported in recent years; [3+2] cycloadditions occur upon palladium-catalyzed reactions of alkylidenecyclopropanes with sulfonylimines[11] and upon Lewis acid catalyzed reactions of arylidenecyclopropanes with tosylimines.^[12] Under scandium catalysis, arylidenecyclopropanes react with N-phenylimines in a [4+2] cycloaddition.[13] The reactions presented herein are the first examples of [2+2] cycloadditions of imines to methylenecyclopropane derivatives. The readily available 2-alkoxyazetidines offer themselves as versatile building blocks for the synthesis of various other compounds. One such application is preparation of α -cyclopropanated β -amino acids such as 10, some of which are found in biologically active compounds.^[14] It has also been shown that oligopeptides derived from α cyclopropanated β-amino acids may have interesting secondary structures.[15]

Experimental Section

General procedure: a) Thermal conditions: Substrate 1 (0.3 mmol) was added to a solution of the imine 2 (0.2 mmol) in acetonitrile (0.1 mL) under argon in a Wheaton microreactor. The mixture was stirred at 80°C for 4–61 h, and the product 3 was purified by column chromatography through silica gel (Fuji Silysia) with hexane/EtOAc/Et₃N (20:1:2) as eluent. b) Catalytic conditions: Substrate 1 (0.3 mmol) was added to a mixture of [Ag(fod)] (12.1 mg, 0.030 mmol) and the imine 2 (0.3 mmol) in ethyl acetate (0.3 mL) under argon in a Wheaton microreactor. The mixture was stirred for 37–42 h and then filtered through a short silica gel (Fuji Silysia) column with EtOAc/Et₃N (10:1) eluent. Purification of the crude product by chromatography through silica gel (Fuji Silysia) with hexane/EtOAc/Et₃N (20:1:2) afforded 3.

3ac: ¹H NMR (400 MHz, CDCl₃): δ = 0.05–0.08 (m, 1 H), 0.55–0.60 (m, 2 H), 0.78–0.82 (m, 1 H), 2.39 (s, 3 H), 4.84 (dd, J = 84, 12.4 Hz, 2 H), 4.85 (s, 1 H), 5.50 (s, 1 H), 7.20–7.37 (m, 12 H), 7.65 ppm

(d, J=8.4 Hz, 2H); 13 C NMR (100 MHz, CDCl₃): $\delta=4.4$, 8.3, 21.6, 29.7, 65.4, 70.6, 92.3, 127.4, 127.6, 127.7, 127.7, 127.9, 128.2, 128.3, 129.4, 135.2, 137.3, 137.7, 143.6 ppm; IR (neat): $\tilde{v}=3062-2953$, 2902, 1596, 1338, 1250, 1115 cm⁻¹; elemental analysis: calcd for C₂₅H₂₅NO₃S (419.54): C 71.57, H 6.01, N 3.34, S 7.64; found: C 71.40, H 6.14, N 3.34, S 7.56; HRMS(EI): m/z calcd for C₂₅H₂₅NO₃S: 419.1555; found: 419.1550.

Received: March 11, 2006 Revised: May 1, 2006 Published online: July 6, 2006

Keywords: amino acids · cycloaddition · cyclopropanes · homogeneous catalysis · silver

- [1] For a review, see: S. France, A. Weatherwax, A. E. Taggi, T. Lectka, *Acc. Chem. Res.* **2004**, *37*, 592–600.
- a) H. Staudinger, Justus Liebigs Ann. Chem. 1907, 356, 51–123; for recent reports concerning the Staudinger reaction, see: b) C. Palomo, J. M. Aizpurua, I. Ganboa, M. Oiarbide, Eur. J. Org. Chem. 1999, 3223–3235; c) S. France, H. Wack, A. M. Hafez, A. E. Taggi, D. R. Witsil, T. Lectka, Org. Lett. 2002, 4, 1603–1605; d) B. L. Hodous, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 1578-1579; e) A. E. Taggi, A. M. Hafez, H. Wack, B. Young, D. Ferraris, T. Lectka, J. Am. Chem. Soc. 2002, 124, 6626–6635.
- [3] T. Akiyama, K. Daidouji, K. Fuchibe, Org. Lett. 2003, 5, 3691 3693.
- [4] J. A. Townes, M. A. Evans, J. Queffelec, S. J. Taylor, J. P. Morken, Org. Lett. 2002, 4, 2537 2540.
- [5] R. W. M. Aben, R. Smit, J. W. Scheeren, J. Org. Chem. 1987, 52, 365–370.
- [6] a) A. T. Bottini, L. J. Cabral, Tetrahedron 1978, 34, 3187-3194;
 b) N. A. Petasis, E. I. Bzowej, Tetrahedron Lett. 1993, 34, 943-946
- [7] A. de Meijere, A. Leonov, T. Heiner, M. Noltemeyer, M. T. Bes, Eur. J. Org. Chem. 2003, 3, 472 – 478.
- [8] CCDC-284945 (trans-3ac) and CCDC-284946 (cis-3ac) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.
- [9] In a preliminary attempt to induce an asymmetric reaction of 1a with 2c with Ag(OTf) and (S)-binap as a chiral catalyst system, the product 3ac was not obtained all.
- [10] a) H. Hart, J. M. Sandri, J. Am. Chem. Soc. 1959, 81, 320; b) N. C. Deno, H. G. Richey, Jr., J. S. Liu, J. D. Hodge, J. J. Houser, M. J. Wisotsky, J. Am. Chem. Soc. 1962, 84, 2016; c) D. D. Roberts, R. C. Snyder, Jr., J. Org. Chem. 1979, 44, 2860 2863; d) For a review see: A. de Meijere, Angew. Chem. 1979, 91, 867 884; Angew. Chem. Int. Ed. Engl. 1979, 18, 809 826.
- [11] B. H. Oh, I. Nakamura, S. Saito, Y. Yamamoto, *Tetrahedron Lett.* **2001**, *42*, 6203–6205.
- [12] M. Shi, B. Xu, J.-W. Huang, Org. Lett. 2004, 6, 1175-1178.
- [13] a) M. Shi, L.-X. Shao, B. Xu, Org. Lett. 2003, 5, 579-582; b) L. Patient, M. B. Berry, S. J. Coles, M. B. Hursthouse, J. D. Kilburn, Chem. Commun. 2003, 2552-2553; c) S. Rajamaki, J. D. Kilburn, Chem. Commun. 2005, 1637-1639.
- [14] Cf. D. L. Varie, C. Shih, D. A. Hay, S. L. Andis, T. H. Corbett, L. S. Gossett, S. K. Janisse, M. J. Martinelli, E. D. Moher, R. M. Schultz, J. E. Toth, *Bioorg. Med. Chem. Lett.* 1999, 9, 369–374.
- [15] a) D. Seebach, S. Abele, T. Sifferlen, M. Hänggi, S. Gruner, P. Seiler, Helv. Chim. Acta 1998, 81, 2218-2241; b) S. Abele, P. Seiler, D. Seebach, Helv. Chim. Acta 1999, 82, 1559-1571; c) S. Abele, D. Seebach, Eur. J. Org. Chem. 2000, 1-15.